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1. Introduction

This report provides a guide for practitioners wanting to use synthetic experimental designs

to evaluate policy interventions. It focuses on the Catalan universal basic income pilot study

that aims to treat two towns in 2023 with a substantial universal basic income for a period

of two years. The main goal of the report is to show how inference on various outcomes

of interest can be achieved by choosing the towns to treat using the synthetic experimental

design framework of Abadie and Zhao (2021). We show that approximate inference can be

achieved despite the small number of treated units. This guide, however, expands beyond

the standard synthetic experimental design framework by considering inference on multiple

outcomes (see Trejo et al. (2021) and Amjad et al. (2019) for related methods) and by pro-

viding a point-by-point rubric to dealing with practical concerns such as choosing exclusion

constraints or thinking about allocation fairness.

The main conclusion of the report is that in the Catalan UBI pilot study setting there

exists a valid synthetic experimental design. The weighted pair of towns A and B is able

to replicate the population values for a variety of outcomes in the years leading to the

experiment (names redacted until the experiment is official). The report ties theory and

practical concerns to show how we would do inference on the outcomes of interests if a pair

such as A and B were chosen for treatment. Furthermore, it details all the design choices

that led to this pair being chosen. These include, amongst others, the choice of the target

population, the set of outcome variables and covariates considered, the exclusion restrictions

imposed to avoid interference and the specific form of the target loss function. In particular,

each section in the report is devoted to a step in building the synthetic experimental design.

– Section 2 (Theory) considers the theory behind using synthetic experimental design

to perform inference on the outcomes of the policy intervention. It shows how one

might expand Abadie and Zhao (2021) to include multiple outcomes and provides a

fast algorithm for implementation when the number of treated units is small relative

to the pool of units.

1This report has been anonymized to avoid revealing the identity of the porposed treatment and control
villages. Throughout the report the preferred pair is referred as A and B.
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– Section 3 (Design choices) details the criteria used to choose the outcome variables,

the potentially treated units, the set of controls units and the target population. These

set of criteria could be useful to researchers thinking about similar designs.

– Section 4 (UBI application) applies the methodology to the Catalan UBI pilot

study and evaluates the goodness of fit of the preferred pair in order to check if the

theoretical assumptions for inference are likely to hold. The conclusion is that the A

and B pair likely satisfy the theoretical assumptions for most outcomes. Furthermore,

a minimum detectable effect analysis suggests that for most outcomes of interest the

experiment will be able to detect moderate effects with sizes larger than 0.1 standard

deviations.

– Section 5 (Lotteries and fairness) evaluates whether a fairer allocation could be

achieved through the use of a lottery while maintaining good pre-treatment fit. The

conclusion is that in the Catalan UBI setting a lottery would not help resolve the

tension between fairness and efficiency. However, the section may provide guidance for

other settings in which a lottery may be suitable.

Overall, the sections of this report are thought as a step by step guide on how to use

synthetic experimental design for experimental policy evaluation. From the theory behind

inference, to how to think about the design choices and target parameters and how to get and

evaluate the synthetic treated and control units. Finally, section 5 also considers the related

problem of how to trade-off fairness and efficiency when treatment is not chosen completely

at random.

2. The theory of multi-experimental design using synthetic controls

We are interested in the experimental design setting of Abadie and Zhao (2021) with multiple

outcome variables. The framework we use is based on the standard synthetic control method

(Abadie and Gardeazabal (2003), Abadie et al. (2010), Abadie et al. (2015)), but alternative

designs have also been proposed by Doudchenko et al. (2021). Consider the problem of

designing an experiment for a small number of aggregate treated units. The target parameter

is the average treatment effect with respect to a weighted average of the overall population

of units for various outcomes of interest. We aim to treat a small number m of units at time

T0 from a pool of J units indexed j = 1, . . . , J observed for T periods of time. We denote

the k = 1, . . . , K outcome of interest by Y k
it with potential outcomes Y k

it (Dit) indexed by
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treatment status Dit ∈ {0, 1}. The unit-level treatment effect of interest for outcome k is

then defined as

τ kit = Y k
it (1)− Y k

it (0),

for j = 1, . . . , J , t = T0 + 1, . . . , T and k = 1, . . . , K. As in Abadie and Zhao (2021), our

target parameter of interest is a weighted average treatment effect

τ kt =
J∑

j=1

fj(Y
k
it (1)− Y k

it (0)),

where f1, . . . , fj represent known population weights such that fj ≥ 0 and
∑

j fj = 1. In the

simplest case, each unit is weighted uniformly and fj = 1/J .

Experimental design In order to estimate τt for t = T0 +1, . . . , T the researcher chooses

two sets of weights:

Treatment weights : (w1, . . . , wJ) s.t
J∑

j=1

wj = 1,

Control weights : (v1, . . . , vJ) s.t
J∑

j=1

vj = 1,

wj ≥ 0, vj ≥ 0, and wjvj = 0, for all j = 1, . . . , J.

The treated units are the ones with wj > 0 and will be assigned to the intervention at

time T0, while the control units are the ones with vj > 0 and will be used to estimate the

counterfactual in absence of intervention for the treated units for t > T0. Overall, we can

separate the experimenter problem in two main goals:

1. Representative experiment: we want to choose w1, . . . , wJ such that in absence of

the intervention the treated units are representative of the population. That is, for

each outcome k,
J∑

j=1

wjY
k
jt(0) =

J∑
j=1

fjY
k
jt(0).

2. Valid control group: we want to choose v1, 0 . . . , vJ such that in absence of the

intervention the outcomes for the treated units and the controls units are very close.
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This is the ”good pre-treatment fit” condition that is standard in synthetic control

studies. For each outcome k it boils down to having that

J∑
j=1

wjY
k
jt(0) =

J∑
j=1

vjY
k
jt(0).

Both conditions, the representative condition and the valid control group condition, may

only hold approximately in practice. However, the validity of our method, both in terms of

identification of our parameter of interest τ kt and inference, relies on our model being able

to satisfy both conditions. Furthermore, the same guiding principles as in synthetic controls

apply (see Abadie and Vives-i-Bastida 2021 for a detailed guide). In this case, our estimated

treatment effect for weights (w,v) recuperates the weighted average treatment effect for

t > T0

τ kt (w,v) =
J∑

j=1

wjY
k
jt(1)−

J∑
j=1

vjY
k
jt(0) =

J∑
j=1

fj(Y
k
jt(1)− Y k

jt(0)) = τ kt .

Finding w and v As in the standard synthetic control method, we estimate the weights

by using predictors of the pre-intervention outcomes. Given that in our setting we have k

outcomes of interest, as in Trejo et al. (2021) we construct our design matrix by concatenating

all outcomes Y k
it for the pre-intervention periods. Let

Xj = (Y 1
j1, . . . , Y

1
jT0

, . . . , Y K
j1 , . . . , Y

K
jT0

, Zj)
′ and X̄ =

J∑
j=1

fjXj

be the set of predictors and target predictor of interest respectively, where Zj denotes time-

invariate observed covariates we want to match in addition to the outcomes. Then, we

estimate the treatment and control weights by solving a program similar to the one proposed
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by Abadie and Zhao (2021),

min
w,v

∥∥∥∥∥X̄ −
J∑

j=1

wjXj

∥∥∥∥∥
2

H

+ ξ

∥∥∥∥∥
J∑

j=1

wjXj −
J∑

j=1

vjXj

∥∥∥∥∥
2

H

+ ξλ

J∑
j=1

vj

∥∥∥∥∥
J∑

i=1

wiX i −Xj

∥∥∥∥∥
2

H

,

s.t.
J∑

j=1

wj = 1,

J∑
j=1

vj = 1,

wj, vj ≥ 0, wjvj = 0, for all j = 1, . . . , J,

∥w∥0 = m,

(1)

where ∥A∥2H denotes the weighted norm A′HA for a diagonal matrix H with diagonal ele-

ments h1, . . . , hdim(A). The h coefficients can be chosen by researchers to encode preferences

over which predictors/outcomes are more important.

The first term in the program represents the first objective of the experimenter, achieving

a representative treated unit, and the second term measures the discrepancy between the

treated and the synthetic control. The preference of the researcher for each loss is parameter-

ized by ξ, if ξ = 1 then the loss function puts equal weight on the discrepancies between the

treated and the population average, and the control and the population average. The λ-term

is the penalty term from Abadie and L’Hour (2021). The penalty term may be particularly

useful in cases in which the synthetic treated falls in the convex hull of the control units.

This is likely to happen when there are many potential controls available (large J) and,

in these cases, the standard synthetic control will be dense and include many donor units.

Setting λ > 0 will make the choice of v sparse and interpretable. Finally, the constraint

∥w∥0 = m ensures that the number of treated is exactly m and wjvj = 0 that the treated

and control groups do not overlap.

Inference Valid inference can be performed on estimators of the weighted average treat-

ment effect given by weights w∗ and v∗ that solve the above minimization program and are

approximately optimal in the sense that

X̄ −
J∑

j=1

w∗
jXj ≈ 0 and X̄ −

J∑
j=1

v∗jXj ≈ 0,
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Figure 1: Experimental design timeline

T0TE Tt = 0

E B

ensuring that the two goals of the experimenter are achieved. Furthermore, as proposed

by Abadie and Zhao (2021), we divide the pre-intervention period in a fitting period E =

1, . . . , TE and a blank period B = TE + 1, . . . T0. Figure 2 depicts the timeline of the exper-

imental design. In general, it is not necessary to separate sequentially the fitting and the

blank periods, however, in practice it facilitates the pre-treatment fit check. After T0, once

the intervention has been assigned to the treatment units, we define the synthetic control

estimator of the average treatment effect for outcome k as

τ̂ kt (w
∗,v∗) =

J∑
j=1

w∗
jY

k
jt −

J∑
j=1

v∗jY
k
jt, for t > T0.

The main idea behind the inference procedure in Abadie and Zhao 2022 is that under the

null hypothesis H0 : Y
k
jt(0) ∼ Y k

jt(1) for t > T0, that is that the outcomes under intervention

coincide with the outcomes in absence of the intervention, the distribution of the ”placebo”

treatment effects in the blank period B and the distribution of the real treatment effects

after T0 should coincide. The inferential procedure then consists of a permutation test in

which we compare the estimated treatment effects in t > T0 with permuted treatment effects

including the placebo effects from the blank periods.

Formally, let the set of (T − T0)−combinations of the time indices TE, . . . , T be denoted

by Π. Then, for each combination π ∈ Π define the estimated residual as

êk
π = (ûk

π(1), . . . , û
k
π(T−T0)

),

where ût =
∑J

j=1w
∗
jY

k
jt−

∑J
j=1 v

∗
jY

k
jt for t ∈ {TE, . . . , T}. Similarly, the estimated treatment

effect vector is

τ̂ k = (τ̂ kT0+1, . . . , τ̂
k
T ).

The permutation test statistic is defined as an average of the absolute residuals, given a
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(T − T0) vector e,

S(e) =
1

T − T0

T−T0∑
t=1

|et|,

analogously, the permutation p−value for outcome k is given by

p̂k =
1

|Π|
∑
π∈Π

1{S(êk) ≥ S(τ̂ )}.

Under technical conditions Abadie and Zhao (2021) show that this p-value is approximately

valid as TE → ∞ when the outcomes of interest are generated by linear factor models (the

standard assumption in the synthetic control literature). Their results are conditional on a

goodness of fit assumption that can be re-stated as follows for each outcome of interest k

Assumption 1 Given outcomes Yjt that depend on observed covariates Zj, with probability

one, for all t ∈ E

J∑
j=1

w∗
jY

k
jt =

J∑
j=1

fjY
k
jt and

J∑
j=1

v∗jY
k
jt =

J∑
j=1

fjY
k
jt

J∑
j=1

w∗
jZ

k
j =

J∑
j=1

fjZ
k
j and

J∑
j=1

v∗jZ
k
j =

J∑
j=1

fjZ
k
j

The addition of covariates Zj highlights the importance to also match observed variables

that affect the outcomes of interest. Conditional on this assumption holding for all k, and

an appropriate multiple hypothesis testing correction (which is beyond the scope of this re-

port), valid inference can be performed to evaluate the treatment effects on various potential

outcomes of our experimental intervention.

Implementation In practice, for problems with small m but large control pools, it may

be computationally attractive to solve the program lexicographically, first by finding the set

of best synthetic treated units and then for the best treated units finding their respective

synthetic controls. This is equivalent to solving program (1) jointly with ξ → 0, ensuring we

prioritize the fit of the treated units. The following algorithm summarizes the procedure.
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Algorithm 1: Fast Synthetic Experimental Design

Result: ŵ, v̂ for top N candidate tuples.

Data: design matrix X, outcome/covariate weights H , population weights f ,

candidate set M, number of treated m, time periods E, B, penalty λ.

1 generate all m-tuples from candidate set M;

2 get X̃ =
[
X′

k−µk

σk

]
k=1,...,K

, i.e. for each predictor k subtract the f -weighted mean

and divide by the s.d.;

3 get X̃
E
by sub-setting X̃ to experimental periods E;

4 for each candidate m-tuple do

5 find ŵ by minimizing ∥
∑

j∈tuple wjX̃
E

j ∥2H s.t. weight constraints;

6 store loss associated with ŵ;

7 end

8 for the top N m-tuples with lowest loss do

9 given ŵ find v̂ by minimizing∥∥∥∑j ŵjX̃
E

j −
∑

j vjX̃
E

j

∥∥∥2
H
+ λ

∑
j vj

∥∥∥∑i ŵiX̃
E

i − X̃
E

j

∥∥∥2
H

s.t. weight and

exclusion constraints;

10 end

11 collect the top N candidate tuples (ŵ, v̂);

12 report summary statistics over the E and B time periods;

3. Choosing the outcomes, the data and the exclusion criteria

The main goal of the UBI pilot study using synthetic experimental design is to estimate

the general equilibrium effects of the UBI on outcomes related to education, health, the

labor market and the use of public services subject to implementation constraints (i.e. a

government spending constraint). The main challenge with choosing the set of outcomes Y k

for k = 1, . . . , K is that the dimension of the matching problem increases with the number

of outcomes. Considering more outcomes of interest will come at the cost of the fit for

each outcome. With this in mind, our preferred approach is to choose one outcome for each

vertical. An assumption justifying this approach is that the chosen outcomes are generated

by a very similar factor model to the other outcomes in the vertical. Under this assumption

our synthetic model will also be approximately valid for all the other outcomes in the vertical.

The set of criteria to choose our outcomes of interest can then be summarized as follows
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Outcome criteria:

1. Representation: for each vertical, the outcome of interest should be representative

of the overall trends in the vertical.

2. Strength of treatment: each outcome of interest should be affected by the UBI

treatment in a non-mechanical way. For example, income (while an important covari-

ate) is mechanically affected by the UBI. On the other hand, the graduation rate for

mandatory schooling is unlikely to be affected by the treatment.

3. Data availability: outcomes of interest should be available for all candidate treatment

units, for a number of pre-treatment periods and have limited measurement error given

enforcement.

Our experimental design is constrained by treatment criteria that restrict the set of candidate

units. In particular,

Treatment criteria:

1. Number of units: two units are treated, i.e. m = 2.

2. Unit population: each unit should have a population between 1200 and 1400 inhab-

itants.

3. No interference: treated units can not belong to the same province.

4. No known shocks: treated units can not have received an unexpected shock (e.g.

large lottery win) during the pre-treatment periods.

5. No dis-aggregated units: units consisting of multiple population nuclei should have

one nuclei with at least 1000 inhabitants.

The outcome criteria are derived from budget constraints regarding the maximum ex-

pense of the UBI pilot study and statistical constraints. The number of units to be treated

is set to 2 instead of 1 to minimize the risk of unexpected shocks affecting the only treated

unit and improve the odds of adequately reproducing the population average. The statis-

tical constraints ensure that the treatment effects can be identified and estimated. These

statistical criteria are closely related to the criteria for the population and control groups.

Population criteria:
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1. Target population restrictions: the set of population units consists of all villages

and semi-dense towns in Catalonia (according to Eurostat (2021)).

The population criteria define the scope of the experiment. The target parameter is

limited to be the average treatment effect for villages and semi-dense towns, excluding big

cities, for which we have data for all of our outcome variables. This means our target

population includes 852 of the 947 towns in Catalonia at the time of this report2 and 40% of

the population (3 million people). The reason why we restrict the scope of the trial is that

(1) it would be impossible to replicate big cities like Barcelona with a convex combination

of two towns of less than 1500 inhabitants and (2) the general equilibrium effects of the UBI

are likely very different between small towns and large dense cities.

Control criteria:

1. Exclusion restriction: control units can not be within the same ”labor market”,

defined by being in a different region (comarca) as the treated units.

2. Sparsity of controls: the generated synthetic controls must be sparse and supported

on a few units.

The control exclusion criteria limits the interference between control units and treated

units. By limiting controls to be outside the labor market of the treated units we ensure that

the UBI treatment does not spill over to the control units and contaminate our estimated

treatment effect. The sparsity criteria requires the synthetic controls to only include a few

units with positive weight. The rationale behind this constraint is to allow for pre and post

intervention surveys to be collected also in the control units. Given the budget constraints

involved in running surveys for a large amount of units, we limit the set of potential synthetic

control units to be sparse.

Given our set of outcome, treatment, population and control criteria we choose the fol-

lowing outcomes and data sources

The data:

1. Outcome variables

– Unemployment rate: constructed at the town level with data from Idescat and

the Departement d’Empresa i Treball. Available from 2012 to 2021.

2The number of villages and semi-dense towns is 905, but after removing villages with missing values for
our main outcomes of interest we are left with 852.
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– Share of hospitalizations: number of hospitalizations relative to town popula-

tion. Constructed with data from the Agencia de Qualitat i Avaluacio Sanitaries

de Catalunya (AQuAS). Available from 2012 to 2021.

– Share of users of social services: number of users of social services relative to

town population. Constructed with data from the Departament de Drets Socials

de la Generalitat de Catalunya. Available from 2012-2014, 2016-2017 and 2019-

2020.3

– Entrance rate into Batxillerat : share of population that after mandatory for-

mal education (until 16 years old), enrol in the optional Batxillerat high school

program in public schools. Constructed with data from theDepartament d’Educacio

de la Generalitat de Catalunya. Available from 2017 to 2021.

2. Covariates

– Average age at the town level. Constructed with data from the Estadistica del

Padro continu of the INE. Available from 2012 to 2021.

– Percentage of foreign population at the town level. Constructed with data from

the Padro municipal d’habitants de l’Idescat. Available from 2012 to 2021.

– Average net income at the town level. Constructed with data from the Atlas

d’estadistica experimental de l’INE. Available from 2015 to 2019.

– Gini coefficient. Constructed with data from the Atlas d’estadistica experimental

de l’INE. Available from 2015 to 2019.

Given the set of treatment and population criteria, we have 15 candidate units for treatment.

The treatment candidates :

– Almoster, Anglesola, Bellcaire d’Urgell, Corçà, La Fuliola, Miralcamp, Perafort, El Pla

del Penedès, Puigverd de Lleida, Sant Julià del Llor i Bonmat́ı, Sant Mart́ı de Tous,

Térmens, Torà, Vallbona d’Anoia and Vila-rodona.

Finally, we consider the timeline of the Catalan UBI pilot study experimental design.

Figure 2 details the timeline. In short, the treatment will happen in 2023, years 2012 to

2018 (avoiding the covid years) are used to design the experiment (periods E) and 2019 -

32018 removed as data may suffer from severe measurement error/corruption, as several units show
extreme values.
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Figure 2: Timeline Catalan UBI Pilot

20222019 20252012

E B

2022 will be used as blank periods (periods B) to evaluate the design and perform valid

inference (currently only data from 2019-2021 is available). The experiment will then be

evaluated during the treatment years 2023-2024 and after the treatment periods in 2025 and

beyond. The number of blank periods is chosen to be 4 to ensure that the lower bound of the

approximate p-value p̂k ≥ 1/|Π| is below 0.05. A smaller number of blank periods risks not

being able to do inference. Indeed, having only 3 blank periods will give us a lower bound

of exactly 0.05 when only 3 post-treatment periods are available. On the other hand, given

that we don’t have many pre-treatment periods choosing a number of blank periods greater

than 4 will increase the risk that we over-fit to the E periods and that our blank period fit

is bad making inference more difficult.

4. Designing the Catalan UBI Synthetic Experiment

To find the best synthetic experiment for the Catalan UBI pilot study, we solve program

(1) by running algorithm 1 as described in section 2. We proceed in this manner to simplify

the computational problem and because given that we have 15 candidates but 852 potential

controls the hard part of program (1) is minimizing the first term. In particular, we use

Algorithm 1 with the following parameters:

Parameters :

1. Data: outcome variables defined in section 2 and with covariates values averaged over

2012-2018.

2. Outcome weights: all outcomes receive the same weight, with covariates receiving

1/10th of the weight. This is done to ensure we choose the weights that best reproduce

all outcomes, and amongst the weights that have good outcome fit the ones that also

balance the covariates. The results are robust to changing the covariate weightings.

3. Population weights: given our population criteria in section 2 we choose a uniform

weighting such that the target parameter is a simple average treatment effect.
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4. Candidate set: given in section 2, including 15 units and 105 candidate pairs.

5. Treatment number: m = 2.

6. Time periods: experimental design time periods E are 2012 to 2018, and the blank

time periods B are 2019 to 2021.

7. Penalty: λ = 0.1. As shown in Abadie and L’Hour 2021, λ → ϵ > 0 is sufficient to

select a sparse solution. The results are robust to different choices of λ.

Results and evaluation We run the procedure described in Algorithm 1 for the given

parameters. This allows us to identify the preferred candidate pair to be treated as the

candidate pair with the lowest mean squared error in the experimental periods 2012-2018

(i.e. the best fit).

– The preferred pair: A and B with weights of wA and wB respectively.

– The preferred synthetic control: a convex combination of five towns.4

To evaluate how good the fit is of the preferred pair, and check whether assumption 1 is

likely to hold, we consider a normalized version of the mean squared error (NMSE) for a set

of time periods T ,

NMSET

(
Ȳ

k
, Ŷ

k,synth
)
=

1

|T |
∑
t∈T

(
Ȳ k
t − Ŷ k,synth

t

σk
t

)2

,

where Ȳ denotes the population average, Ŷ synth denotes the weighted average for the syn-

thetic treated units and σk
t is the standard deviation over units for the outcome of interest

each year. We use the NMSE because we want to be able to compare the MSE for different

outcomes in the same scale.

Table 1 displays normalized mean squared errors averaged for the time periods 2012 to

2018 for the outcome variables5. The fit of the synthetic treated unit (A-B) is very good for

all outcome variables. In the cases of the unemployment rate and the hospitalizations rate it

is of the order of 0.01 (with 1 being the standard deviation of each variable), with the NMSE

being close to 0.03 for the social service usage and 0.09 for the Batxillerat enrollment rate.

4Table 7 has the list of the top 10 units with most weight in the synthetic control, almost all weight is
concentrated in the top 5.

5This is the target loss function for X̃ used in Algorithm 1.
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Table 1: Synthetic Experiment: pre-treatment fit

Outcome fit NMSE NMSE
(ST, Pop) (ST, SC)

Unemployment rate 0.008 0.004
Batxillerat enrollment rate 0.088 0.077
Hospitalizations rate 0.010 0.014
Social service usage rate 0.030 0.012

Notes: Normalized mean squared error between the
synthetic treated unit (ST) and the population (Pop)
and synthetic control (SC) for the four outcomes of
interest.

The fit is also good between the synthetic control and the synthetic treated unit with similar

magnitudes. This suggests that assumption 1 for the outcomes of interest is likely satisfied

for three outcome verticals. For the Batxillerat enrollment rate it might be necessary to use

a bias correction such as the one proposed in Abadie and L’Hour 2021 or use a different

inference procedure.

While covariate fit is a secondary goal of our analysis, Table 4 in the appendix shows the

mean covariate values for the population, synthetic treated, and synthetic control over the

2012-2018 period. The synthetic treated unit has covariate values close to the population.

In all cases, in underestimates the population average by a small amount when compared

to the respective standard deviation of each covariate. In other words, while the pair (A-

B) almost perfectly replicates the outcomes of the population, it does so while having a

slightly younger population, with a lower net income and Gini coefficient and with slightly

less foreign inhabitants.

Figure 3 shows the outcome fit for every time period. This is a more intuitive way to

evaluate the fit of our model related directly to Assumption 1, akin to the checking the fit

in synthetic control studies or the parallel trends assumption in Diff-in-Diff designs. Each

panel in Figure 3 plots five lines: the dark black line is the population average (our target),

the dashed black line the synthetic treated unit, the dashed gray line the synthetic control

and the other two lines are the outcome values for each unit in the preferred pair (A and

B). As can be seen in panels (a)-(c) the fit is good, with both the synthetic treated and

synthetic control being closed to the population. Furthermore, each unit in the preferred

pair has outcomes also close to the population, meaning that our model does not need to

interpolate significantly to achieve a good fit. This is good because it means that were there
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Figure 3: Pre-treatment outcome fit

(a) Unemployment Rate (b) Hospitalization rate

(c) Social service usage rate (d) Batxillerat enrollment rate

Notes: Each panel plots the outcome values for 2012-2021 for the synthetic treated unit, the synthetic
control and the population average. The vertical dashed line at 2018 indicates the end of the experimental
period (E).
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to be a shock/anomaly in one of the units in the pair, we would be able to use the other

unit to perform our statistical analysis.

We run our analysis for the top 15 pairs, in Table 8 in the appendix we provide the total

normalized NMSE across all outcomes and the covariates for the top 15 pairs. The total

NMSE fit between the synthetic treated and the population for the preferred pair is 0.0440

while the average for the top 15 pairs is 0.0694, the standard deviation is 0.0173 and the

maximum value is 0.0988, more than double the NMSE of the best pair. Given the results

reported in Table 1 and Figure 3 the clear recommendation is to use the preferred pair (A

and B) in the design of the UBI pilot study, other choices risk using pairs that won’t satisfy

Assumption 1 for the main outcomes and will difficult inference. Furthermore, all pairs in

the top 10 include A or B (Table 8), with the fit decreasing significantly for pairs in the

top 15 without either unit. Despite this, in the next section we discuss guidelines on how a

lottery could be used to select the pair given our model results.

Blank period fit and detectable effects While we can’t decide the outcome pair on the

basis of the fit in the blank period (otherwise we would bias our statistical analysis). We can

use the blank periods in 2019-2021 to evaluate whether our model is likely to have over-fitted

to the experimental periods. If the fit were bad in the blank periods it could be that our

inference procedure would yield biased results. Figure 3 shows that this is likely not the case

as the fit is also good in the blank periods (after 2018, the dashed line). Furthermore, the

NMSE for the blank periods are similar in magnitude to the ones reported in Table 1, as can

be seen in Table 2, and the total NMSE is 0.0559, also close to the value for the experimental

periods. The only exception is the SC fit for the Batxillerat enrollment rate which indicates

we may have to compute a separate synthetic control for this variable. This implies that (1)

our method likely did not over-fit to the experimental periods 2012-2018 and (2) that we

may be able to detect reasonable treatment effects.

The blank period fit allows us to simulate potential approximate p-values assuming dif-

ferent levels of treatment effects. As in the case of the Catalan UBI pilot study we consider

a setting in which we only have three post-experiment periods, and we assume a constant

average treatment effect over time, τ kt = τ k for t ∈ {T0+1, T0+2, T0+3}. Then, we compute

the p̂k approximate p-value described in section 2 using the blank period ûts we obtain from

our model and the simulated treatment effects τ kt . Given that we don’t observe at the time

of the experimental design the values for 2022 we consider the p-value when û2022 is imputed

with the mean, max and twice the max of the ûts observed in the blank periods 2019-2021.
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Table 2: Synthetic Experiment: blank period fit

Outcome fit NMSE NMSE
(ST, Pop) (ST, SC)

Unemployment rate 0.009 0.003
Batxillerat enrollment rate 0.091 0.384
Hospitalizations rate 0.072 0.031
Social services usage rate 0.049 0.004

Notes: Normalized mean squared error between the
synthetic treated unit (ST) and the population (Pop)
and synthetic control (SC) for the four outcomes of
interest in the blank periods 2019-2021.

Table 3: Synthetic Experiment: minimum detectable effects

Outcome mean ût max ût 2×max ût

Unemployment rate 0.1 0.1 0.2
Batxillerat enrollment rate 0.87 0.87 None
Hospitalizations rate 0.26 0.26 0.53
Social service usage rate 0.16 0.16 0.32

Notes: Minimum τk relative to one standard deviation
needed for p̂k ≤ 0.05 for different assumptions on how to im-
pute the ût for t = 2022. ’mean’ and ’max’ are taken over the
values of ût for the periods 2019-2021.

Table 3 shows the ATE levels (τ k) needed for the approximate p-value to be smaller or

equal to 0.05. It is important to note that the approximate p-value is bounded below by

the 1/|Π| = 0.0285 in the case with 4 blank periods and 3 post-treatment periods. Overall

Table 3 shows that our experimental design should be able to detect effects of moderate

size, with minimum effects between 0.1 and 0.3 standard deviations for the unemployment

rate, the hospitalizations rate and the social service usage rate. It should not be surprising

that given the small number of time periods and high variance of the education outcome,

the treatment effect has to be at least 0.87 standard deviations. While these numbers might

seem high, putting them in context reveals that these effects are associated with moderate

level changes (except in the case of Batxillerat enrollment). Indeed, a 0.1 s.d. increase in

the unemployment rate is equivalent to a 0.5 point increase (s.d. is 4.8), a 0.26 s.d. increase

in the hospitalizations rate is also equivalent to a 0.5 point increase (s.d. is 2), a 0.16 s.d.
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increase in the social service usage is equivalent to a 3.2 point increase (s.d. is 20) and a

0.87 increase in the Batxillerat enrollment rate is equivalent to a 27.5 point increase (s.d. is

31.6).

5. Want to do a lottery?

Often in public policy evaluation allocation fairness is an important consideration. Lotteries

may be an appealing instrument to ensure allocation outcomes are ex-ante fair. However,

there is no free lunch. Lotteries and fairness considerations come at the cost of efficiency. In

our setting, we can model the trade-off between fairness and efficiency as a simple constrained

optimization problem.

Let an allocation rule x : M → [0, 1], for the set of candidate units M, with J = |M|
such that

∑
m∈M x(m) = 1, denote distribution of selection probabilities into the pilot study.

We say that an allocation is δ-fair if its Bhattacharyya distance to the uniform distribution,

denoted UJ , is δ

DB(x, UJ) = − log

(
1√
J

∑
m∈M

√
x(m)

)
= δ(x).

In the case in which the allocation x is uniform the distance becomes 0 and we say the

allocation is fair. On the other hand, we also have a statistical model f : M × M → R+

that given a pair of units gives us the statistical fit (mean squared error) of the model.

Therefore, given an allocation rule x and model f we say that the expected fit is

Ef [x] =
∑

(m,n)∈P(M)

x(m)x(n)∑
(m,n)∈P(M) x(m)x(n)

f(m,n),

where P(M) denotes the set of unique pairs given units M, with |P(M)| = J(J − 1)/2.

Observe that Ef [x] is just a weighted average of the fits of each pair. Another candidate

evaluation function is the worst case fit

Wf [x] = max
m,n, s.t. m ̸=n

x(m)x−m(n)f(m,n).

In practice, it is useful to normalize the worst case fit relative to the best fit amongst all

pairs:

rf (x) =
Wf [x]

minm,n f(m,n)
.

A relative worst case fit of 1 means that the allocation will yield the pair that minimizes
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the fit. Similarly, a relative worst case fit of 2 means that the allocation x has a chance of

increasing the mean squared error by a factor of 2. An intuitive objective function for policy

makers is one that achieves the best fairness conditional on a maximum relative worst case

fit:

XW (β, f) = {argmin
x∈X

δ(x) s.t. rf (x) ≤ β}.

Our recommendation would be to choose and allocation in XW (β, f), however a simple

theoretical result shows that this set might be empty in practice (proof in the appendix).

Lemma 1 The optimal allocations in XW (β, f) are uniform distributions supported in all

units that are in a pair below the worst-fit threshold. That is,

XW (β, f) = {U({x1, . . . , xb})| for any xi, xj, f(xi, xj) < βmin
m,n

f(m,n)}

where U({x1, . . . , xb}) denotes the uniform distribution supported on a set of units {x1, . . . , xb}.

This result implies that in many applications X(β, f) = ∅ when β is small or the fit depends

heavily on a few units. Unfortunately, this is our case.

– Guideline 1 − no lottery will be fair and ensure a good fit: In our setting

XW (2, f) = ∅. We cannot simultaneously ensure a fair allocation and a mean squared

error that is at most 2 times greater than the lowest mean squared error.

Given the negative result implied by Guideline 1, we consider next a weaker constraint on

the trade-off between fairness and efficiency. Let the set of allocations that have best possible

fit conditional on being at least δ−fair

XE(β, f) = {argmin
x∈X

Ef [x] s.t. DB(x, UJ) ≤ δ}.

This set of distributions is harder to characterize. However, if we consider the fairness at

the pair level and if the following condition holds

− log

 1√
J(J − 1)/2

1√∑
(m,n)∈P(M) 1/f(m,n)

∑
(m,n)∈P(M)

√
f(m,n)

 ≤ δ,
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then, an allocation that minimizes risk while being pair δ-fair is the one that inversely weights

each pair according to fit. That is,

Xweighted fit =

{
x : for any a, b x(a)x(b) =

1/f(a, b)∑
(m,n)∈P(M) 1/f(m,n)

}
.

In our setting, given that the NMSE drops uniformly in Table 8, we might consider using

an allocation in Xweighted fit to trade-off fit and fairness. However, the problem is that this

allocation will be far from fair in the Bhattacharyya distance sense unless we consider all

pairs, and the expected fit will be large unless we restrict to top pairs. This tension can not

be resolved easily.

– Guideline 2 − second best: using a weighted fit allocation (Xweighted fit) for the

top 15 pairs will yield an expected total NMSE in the experimental period of 0.0656

(50% larger than for the preferred pair), in the blank period of 0.0865 (54% larger

than for the preferred pair) and will be at least 0.98-fair. Considering fairness with

respect to only the top 15 pairs means the allocation is 0.007-fair, closer to the uniform

distribution.

Guideline 2 highlights the trade-off between fairness and efficiency for a reasonable choice

of allocation. Its main takeaway is that doing a lottery requires an important relaxation of

the notion of fairness, and even then, may come at cost of a decrease in fit of, on average,

50%. Together with Guideline 1, this suggests that this particular setting may be ill suited

for a design that includes a lottery step, as fairness can not be reconciled with statistical fit.

6. Conclusion

This report provides a guide on how to design an experimental policy intervention using

synthetic designs. It explains the theory of synthetic experimental design and details the

practical steps researchers should take to bring the theory to practice. The report is con-

cerned with the Catalan UBI pilot study design in which two towns are to receive a UBI

treatment at the start of 2023. The research question is how to choose these two towns and

how to do inference on a variety of outcomes after the UBI experiment finishes. The report

advocates for the use of synthetic experimental design and shows that there exist a pair of

towns (A and B) that replicate the population outcomes of interest in the years leading to

treatment and have good associated synthetic controls. Finally, the report concludes with
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a discussion on why a lottery in the Catalan UBI setting might not be suitable to trade-off

fairness and efficiency.
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Table 4: Synthetic Experiment: covariate fit

Covariate fit Mean Mean Mean
(Pop) (ST) (SC)

Net income (euros) 12320.0 11188.7 14679.4
Percentage foreign 21.2 20.5 17.5
Average age 43.9 42.9 41.9
Gini coefficient 30.3 28.9 29.7

Notes: Means of the covariates over the 2012-2018 period
for the synthetic treated unit, the synthetic control and the
population.

Table 5: Synthetic Experiment: blank period fit with two blank periods

Outcome fit NMSE NMSE
(ST, Pop) (ST, SC)

Unemployment rate 0.0085 0.0023
Hospitalizations rate 0.0945 0.0125
Social services usage rate 0.0327 0.0000
Batxillerat enrollment rate 0.0421 0.1009

Notes: Normalized mean squared error between
the synthetic treated unit (ST) and the popula-
tion (Pop) and synthetic control (SC) for the four
outcomes of interest in the blank periods 2020 and
2021.

A.1. Additional Tables

A.2. Model results for top 15 pairs

A.3. Lottery results proofs

Lemma 1 Proof

If we were in a continuous setting, at the optimum the constraint would always bind because

otherwise there would exist a profitable deviation that lowers δ(x) while satisfying the constraint.

This implies that in the discrete case we need only consider the set of allocations that give zero

probability to units that only appear in pairs with fit worse than βminm,n f(m,n). Amongst these

allocations we can’t include any distribution that assigns positive probability to two units that have
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Table 6: Synthetic Experiment: pre-treatment fit with two blank periods

Outcome fit NMSE NMSE
(ST, Pop) (ST, SC)

Unemployment rate 0.0113 0.0152
Hospitalizations rate 0.0079 0.0180
Social services usage rate 0.0314 0.0318
Batxillerat enrollment rate 0.0669 0.1561

Covariate fit Mean Mean Mean
(ST) (SC) (Pop)

Age 42.9 44.5 43.9
Percentage foreign 20.7 23.4 21.3
Net income (euros) 11325 11530 12558
Gini coefficient 29.0 28.0 30.0

Notes: The upper panel describes the normalized
mean squared error between the synthetic treated
unit (ST) and the population (Pop) and synthetic
control (SC) for the four outcomes of interest. The
lower panel reports the means of the covariates
over the 2012-2019 period for the synthetic treated
unit, the synthetic control and the population.

a pair with fit greater than βminm,n f(m,n), i.e.

x ∈ XW (β, f) =⇒ for any a,b with x(a), x(b) > 0, f(a, b) < βmin
m,n

f(m,n).

In other words, any units that have positive probability under the allocation rule need to have all

pairs satisfy the worst case fit constraint. Within this set, by the definition of DB it follows that

the optimal allocations are

XW (β, f) = {U({x1, . . . , xb})| for any xi, xj , f(xi, xj) < βmin
m,n

f(m,n)}

where U({x1, . . . , xb}) denotes the uniform distribution supported on a set of units {x1, . . . , xb}.
This result implies that in many applications X(β, f) = ∅ for small β parameters.
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Table 7: Synthetic Control: top 10 units

Name Weight
1 0.296
2 0.285
3 0.237
4 0.089
5 0.085
6 0.007
7 0.002
8 0.000
9 0.000
10 0.000

Notes: Syn-
thetic control
for the preferred
pair. Includes
the weights of
the top 10 units
with weights
rounded to 3
decimal places.
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Table 8: Synthetic Experiment: top 15 pairs

Pair Weights Total NMSE

(A, B) (wA, wB) 0.044
2 (0.13, 0.87) 0.051
3 (0.34, 0.66) 0.054
4 (0.15, 0.85) 0.056
5 (0.11, 0.89) 0.058
6 (0.09, 0.91) 0.061
7 (0.05, 0.95) 0.062
8 (0.06, 0.94) 0.062
9 (0.01, 0.99) 0.064
10 (0.26, 0.74) 0.080
11 (0.57, 0.43) 0.081
12 (0.69, 0.31) 0.084
13 (0.47, 0.53) 0.088
14 (0.29, 0.71) 0.097
15 (0.48, 0.52) 0.099

Notes: For each of the top 15 pairs
from Algorithm 1, this table re-
ports the weight each unit receives
in the synthetic treated pair and
the total normalized mean squared
error between the population aver-
age and the synthetic treated unit
in the experimental period.
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